Feedback cooling of a one-electron oscillator.
نویسندگان
چکیده
A one-electron oscillator is cooled from 5.2 K to 850 mK using electronic feedback. Novel quantum jump thermometry reveals a Boltzmann distribution of oscillator energies and directly measures the corresponding temperature. The ratio of electron temperature and damping rate (also directly measured) is observed to be a fluctuation-dissipation invariant, independent of feedback gain, as predicted for noiseless feedback. The sharply reduced linewidth that results from feedback cooling illustrates the likely importance for improved fundamental measurements and symmetry tests.
منابع مشابه
Cooling a vibrational mode coupled to a molecular single-electron transistor
We consider a molecular single electron transistor coupled to a vibrational mode. For some values of the bias and gate voltage transport is possible only by absorption of one ore more phonons. The system acts then as a cooler for the mechanical mode at the condition that the electron temperature is lower than the phonon temperature. The final effective temperature of the vibrational mode depend...
متن کاملSelf-excitation and feedback cooling of an isolated proton.
The first one-proton self-excited oscillator (SEO) and one-proton feedback cooling are demonstrated. In a Penning trap with a large magnetic gradient, the SEO frequency is resolved to the high precision needed to detect a one-proton spin flip. This is after undamped magnetron motion is sideband cooled to a 14 mK theoretical limit, and despite random frequency shifts (typically larger than those...
متن کاملCo oling a nanomechanical resonator using feedback: toward quantum behavior
Nano-electro-mechanical devices are now rapidly approaching the point where it will be possible to observe quantum mechanical behavior. However, for such behavior to be visible it is necessary to reduce the thermal motion of these devices down to temperatures in the millikelvin range. Here we consider the use of feedback control for this purpose. We analyze an experimentally realizable situatio...
متن کاملQuantum enhanced feedback cooling of a mechanical oscillator using nonclassical light
Laser cooling is a fundamental technique used in primary atomic frequency standards, quantum computers, quantum condensed matter physics and tests of fundamental physics, among other areas. It has been known since the early 1990s that laser cooling can, in principle, be improved by using squeezed light as an electromagnetic reservoir; while quantum feedback control using a squeezed light probe ...
متن کاملThe quantum trajectory approach to quantum feedback control of an oscillator revisited.
We revisit the stochastic master equation approach to feedback cooling of a quantum mechanical oscillator undergoing position measurement. By introducing a rotating wave approximation for the measurement and bath coupling, we can provide a more intuitive analysis of the achievable cooling in various regimes of measurement sensitivity and temperature. We also discuss explicitly the effect of bac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 90 4 شماره
صفحات -
تاریخ انتشار 2003